Tóm tắt lý thuyết học kỳ II môn toán lớp 7 phần 2 | Trọng tâm ôn tập


Lý thuyết tổng hợp Toán 7 Chương 8

1. Tổng số đo ba góc của một tam giác:

Định lí: Tổng số đo của ba góc của một tam giác bằng 180°.

Chú ý:

- Tam giác có 3 góc nhọn được gọi là tam giác nhọn.

- Tam giác có một góc vuông được gọi là tam giác vuông, cạnh đối diện góc vuông gọi là cạnh huyền, hai cạnh còn lại gọi là hai cạnh góc vuông.

- Tam giác có một góc tù được gọi là tam giác tù.

Nhận xét: Trong một tam giác vuông, tổng hai góc nhọn bằng 90°

2. Quan hệ giữa ba cạnh của một tam giác:

Định lí: Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn hai cạnh còn lại.

Nhận xét: Trong một tam giác, độ dài một cạnh bao giờ cũng lớn hơn hiệu và nhỏ hơn tổng độ dài của hai cạnh còn lại.

Lưu ý: Khi xét độ dài ba đoạn thẳng có thỏa mãn các bất đẳng thức tam giác hay không, ta chỉ cần so sánh độ dài lớn nhát với tổng của hai độ dài còn lại, hoặc so sánh độ dài nhỏ nhất với hiệu của hai độ dài còn lại.

3. Định nghĩa hai tam giác bằng nhau:

Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau.

Chú ý:

- Khi vẽ hai tam giác bằng nhau, các cạnh hoặc các góc bằng nhau được đánh dấu bởi những kí hiệu giống nhau.

- Khi dùng kí hiệu hai tam giác bằng nhau, ta phải viết các đỉnh tương ứng theo cùng thứ tự.

4. Các trường hợp bằng nhau của hai tam giác

- Trường hợp bằng nhau thứ nhất: cạnh – cạnh – cạnh (c.c.c)

Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.

- Trường hợp bằng nhau thứ hai: cạnh – góc – cạnh (c.g.c)

Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.

- Trường hợp bằng nhau thứ ba: góc – cạnh – góc (g.c.g)

Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

5. Các trường hợp bằng nhau của hai tam giác vuông

- Trường hợp hai cạnh góc vuông:

Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau (theo trường hợp c.g.c).

- Trường hợp một cạnh góc vuông và một góc nhọn:

Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau (theo trường hợp g.c.g).

- Trường hợp cạnh huyền và một cạnh góc vuông:

Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

6. Định nghĩa tam giác cân: Tam giác cân là tam giác có hai cạnh bằng nhau.

7. Tính chất của tam giác cân:

Định lí 1: Trong một tam giác cân, hai góc ở đáy bằng nhau.

Định lí 2: Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân.

Chú ý:

- Tam giác đều là tam giác có ba cạnh bằng nhau.

- Tam giác vuông cân là tam giác vuông và cân.

Nhận xét:

- Tam giác cân có một góc 60° là tam giác đều.

- Tam giác cân có một góc ở đáy bằng 45° là tam giác vuông cân.

8. Quan hệ giữa cạnh và góc trong một tam giác:

Trong một tam giác, đối diện với góc lớn hơn là cạnh lớn hơn và ngược lại, đối diện với cạnh lớn hơn là góc lớn hơn.

Cho ∆ABC có: CA > AB suy ra .

Cho ∆DGE có :  suy ra GE > GD.

9. Đường vuông góc và đường xiên:

- Đoạn thẳng MH gọi là đoạn vuông góc hay đường vuông góc kẻ từ điểm M đến đường thẳng d.

- Đoạn thẳng MA gọi là một đường xiên kẻ từ M đến đường thẳng d.

- Độ dài đoạn MH được gọi là khoảng cách từ điểm M đến đường thẳng d.

10. Mối quan hệ giữa đường vuông góc và đường xiên:

Trong số các đường thẳng nối từ một điểm ở ngoài một đường thẳng đến các điểm trên đường thẳng đó, đường vuông góc luôn ngắn hơn tất cả các đường xiên.

11. Đường trung trực của một đoạn thẳng

Đường trung trực của một đoạn thẳng là đường thẳng vuông góc với đoạn thẳng tại trung điểm của đó.

12. Tính chất của đường trung trực

Định lí 1: Điểm nằm trên trung trực của một đoạn thẳng thì cách đều hai đầu mút của đoạn thẳng đó.

Định lí 2: Điểm cách đều hai mút của đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó.

Chú ý: Các bước dựng đường trung trực của đoạn thẳng AB bằng thước thẳng và compa:

(1) Khi vẽ hai cung tròn trên, ta phải lấy bán kính lớn hơn 1212AB thì hai cung tròn đó mới có hai điểm chung.

Ví dụ:

+ Lấy A làm tâm vẽ cung tròn bán kính lớn hơn ½ AB (như hình vẽ dưới đây)

+ Lấy B làm tâm vẽ cung tròn có bán kính bằng bán kính ở trên (như hình vẽ dưới đây)

+ Hai cung tròn này cắt nhau tại M và N (như hình vẽ dưới đây). Dùng thức vẽ đường thẳng MN. Khi đó MN là đường trung trực đoạn thẳng AB.

Chứng minh:

Hai cung tròn có cùng bán kính và cắt nhau tại M và N nên ta suy ra được MA = MB = NA = NB.

Khi đó, M và N là hai điểm cách đều hai đầu mút A và B của đoạn thẳng AB nên suy M, N nằm trên đường trung trực của đoạn thẳng AB (Theo định lí 2).

Vậy suy ra MN là đường thẳng trung trực của đoạn thẳng AB.

(2) Giao điểm của đường thẳng MN với đoạn thẳng AB là trung điểm của đoạn thẳng AB nên cách vẽ trên cũng là cách dựng trung điểm của đoạn thẳng bằng thước và compa.

Chứng minh: Từ chú ý trên ta chứng minh được MN là đường trung trực của đoạn thẳng AB khi đó MN vuông góc với AB tại trung điểm của AB. Nên suy ra MN giao với AB tại trung điểm của đoạn thẳng AB.

13. Đường trung trực của tam giác

Trong một tam giác, đường trung trực của mỗi cạnh gọi là đường trung trực của tam giác đó.

Chú ý: Mỗi tam giác có ba đường trung trực.

14. Tính chất ba đường trung trực của tam giác

Định lí: Ba đường trung trực của một tam giác cùng đi qua một điểm. Điểm này cách đều ba đỉnh của tam giác đó.

15. Đường trung tuyến của tam giác

Đường trung tuyến của tam giác là đoạn thẳng nối một đỉnh của tam giác với trung điểm cạnh đối diện.

Chú ý: mỗi tam giác có ba đường trung tuyến.

16. Tính chất ba đường trung tuyến của tam giác

Định lí: Ba đường trung tuyến của một tam giác cắt nhau tại một điểm. Điểm đó cách mỗi đỉnh một khoảng bằng 2/3 độ dài đường trung tuyến đi qua đỉnh ấy.

17. Đường cao của tam giác

Đoạn thẳng vuông góc kẻ từ một đỉnh của một tam giác đến đường thẳng chưa cạnh đối diện gọi là đường cao của tam giác đó.

Chú ý: Mỗi tam giác có ba đường cao.

18. Tính chất ba đường cao của tam giác

Định lí: Ba đường cao của một tam giác cùng đi qua một điểm.

Chú ý:

(1) Tam giác nhọn có trực tâm nằm bên trong tam giác (như hình vẽ dưới đây).

Tam giác ABC nhọn có trực tâm H nằm trong tam giác.

(2) Tam giác vuông có trực tâm trùng với đỉnh góc vuông (như hình vẽ dưới đây).

Tam giác EGF có trực tâm H trùng với đỉnh góc vuông E.

(3) Tam giác tù có trực tâm nằm ngoài tam giác (như hình vẽ dưới đây)

Tam giác tù BCD có tực tâm H nằm ngoài tam giác.

19. Đường phân giác của tam giác

Cho tam giác ABC, tia phân giác góc A cắt cạnh BC tại D. Khi đó đoạn thẳng AD được gọi là đường phân giác góc A của tam giác ABC.

Chú ý: Mỗi tam giác có ba đường phân giác.

20. Tính chất ba đường phân giác của tam giác

Định lí: Ba đường phân giác của một tam giác cùng đi qua một điểm. Điểm này cách đều ba cạnh của tam giác.


Lý thuyết tổng hợp Toán 7 Chương 9

1. Biến cố:

Các sự kiện xảy ra trong tự nhiên hay trong một phép thử nghiệm được gọi là một biến cố.

- Biến cố chắc chắn là biến cố luôn xảy ra.

- Biến cố không thể là biến cố không bao giờ xảy ra.

- Biến cố ngẫu nhiên là biến cố không thể biết trước là nó xảy ra hay không.

2. Xác suất của biến cố:

Để đánh giá khả năng xảy ra của mỗi biến cố, ta dùng một con số có giá trị từ 0 đến 1, gọi là xác suất của biến cố. Biến cố có khả năng xảy ra cao hơn sẽ có xác xuất lớn hơn.

- Biến cố không thể có xác suất bằng 0.

- Biến cố chắc chắn xảy ra có xác suất bằng 1.

Kí hiệu: Xác suất của biến cố A được kí hiệu là P(A).

3. Xác suất của biến cố trong trò chơi hay phép thử nghiệm:

Khi tất cả các kết quả của một trò chơi hay phép thử nghiệm ngẫu nhiên đều có khả năng xảy ra bằng nhau thì xác suất xảy ra của mỗi kết quả đều là 1/n, trong đó n là số các kết quả.


Kết luận

Trên đây là đề cương ôn tập học kỳ II môn toán lớp 7 Các bạn có thể tham khảo và ôn tập cho các kỳ thi sắp tới. Hy vọng rằng bài viết này của Điểm 10+ sẽ hữu ích đối với bạn.


Tham khảo KHÓA HỌC TOÁN LỚP 7: Tại đây

Form đăng ký tư vấn

Gọi ngay

Zalo

Facebook