Tóm tắt lý thuyết học kỳ 1 môn toán lớp 6 Chương 1| Trọng tâm ôn tập
Tổng hợp lý thuyết Toán lớp 6 Chương 1
1. Tập hợp, phần tử
Một tập hợp (gọi tắt là tập) bao gồm những đối tượng nhất định, những đối tượng đó được gọi là những phần tử của tập hợp mà ta nhắc đến.
Mối quan hệ giữa tập hợp và phần tử: Tập hợp chứa phần tử (nếu có) và phần tử nằm trong tập hợp.
Tập hợp là khái niệm cơ bản thường dùng trong toán học và cuộc sống. Ta hiểu tập hợp thông qua các ví dụ.
2. Các kí hiệu tập hợp
- Người ta thường đặt tên cho tập hợp bằng các chữ cái in hoa: A, B, C, D, ... và sử dụng các chữ cái thường a, b, c, ... để kí hiệu cho phần tử.
- Các phần tử của tập hợp được viết trong dấu ngoặc nhọn { }, cách nhau bởi dấu chấm phẩy dấu “;”. Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tùy ý.
- Phần tử x thuộc tập hợp A được kí hiệu là x ∈ A, đọc là “x thuộc A”. Phần tử y không thuộc tập hợp A được kí hiệu là y ∉ A, đọc là “y không thuộc A”.
3. Các cách cho một tập hợp
Nhận xét. Để cho một tập hợp, thường có hai cách:
- Liệt kê các phần tử của tập hợp.
- Chỉ ra tính chất đặc trưng cho các phần tử của tập hợp.
Ngoài 2 cách cho tập hợp như trên, người ta còn minh họa bằng hình vẽ (Sơ đồ Venn).
4. Tập rỗng
- Tập rỗng là tập hợp không có phần tử nào, kí hiệu ∅.
5. Tập hợp N và N*
- Các số 0; 1; 2; 3; 4; ... là các số tự nhiên.
- Tập hợp các số tự nhiên được kí hiệu là N , tức là N = {0; 1; 2; 3; ...}.
- Tập hợp các số tự nhiên khác 0 được kí hiệu là N*, tức là N* = {1; 2; 3; ...}
- Tập hợp N bỏ đi số 0 thì được N*.
- Khi cho một số tự nhiên x ∈N* thì ta hiểu x là số tự nhiên khác 0.
6. Thứ tự trong tập hợp số tự nhiên
a) Biểu diễn các số tự nhiên trên tia số:
- Các số tự nhiên được biểu diễn trên tia số bởi các điểm cách đều như sau:
- Tia số có mũi tên sang phải biểu thị chiều tăng dần của các số tự nhiên.
- Mỗi số tự nhiên được biểu diễn bằng một điểm trên tia số; điểm biểu diễn số tự nhiên n được gọi là điểm n.
- Điểm 0 được gọi là gốc.
b) So sánh hai số tự nhiên
- Trong hai số tự nhiên khác nhau, có một số nhỏ hơn số kia, ta viết a < b (đọc là a nhỏ hơn b) hoặc b > a (đọc là b lớn hơn a).
- Khi biểu diễn trên tia số nằm ngang có chiều từ trái sang phải, nếu a < b thì điểm a nằm bên trái điểm b.
Ngoài ra ta cũng viết a ≥ b để chỉ a > b hoặc a = b.
+ Nếu a < b và b < c thì a < c (Tính chất bắc cầu).
+ Hai số tự nhiên liên tiếp hơn kém nhau 1 đơn vị. Mỗi số tự nhiên có một số liền sau duy nhất và một số liền trước duy nhất.
+ Số 0 là số tự nhiên bé nhất.
7. Ghi số tự nhiên
a) Cách ghi số tự nhiên trong hệ thập phân
- Để ghi số tự nhiên trong hệ thập phân, người ta dùng mười chữ số là 0; 1; 2; 3; 4; 5; 6; 7; 8; 9.
- Người ta lấy các chữ số trong 10 chữ số này rồi viết liền nhau thành một dãy, vị trí của các chữ số đó trong dãy gọi là hàng.
- Trong hệ thập phân, cứ 10 đơn vị của một hàng thì làm thành 1 đơn vị của hàng liền trước đó.
Chú ý: Khi viết các số tự nhiên, ta quy ước:
- Với các số tự nhiên khác 0, chữ số đầu tiên bên trái khác 0.
- Đối với các số có 4 chữ số khác 0 trở lên, ta viết tách riêng từng lớp. Mỗi lớp là một nhóm 3 chữ só từ phải sang trái.
- Với những số tự nhiên có nhiều chữ số, mỗi chữ số ở các vị trí (hàng) khác nhau thì có giá trị khác nhau.
b) Hệ thập phân
Ta đã biết cấu tạo thập phân của một số:
- Kí hiệu chỉ số tự nhiên có hai chữ số, chữ số hàng chục là a (a ≠ 0) và chữ số hàng đơn vị là b.
Ta có: = a × 10 + b.
- Kí hiệu chỉ số tự nhiên có ba chữ số, chữ số hàng trăm là a (a ≠ 0), chữ số hàng chục là b, chữ số hàng đơn vị là c.
Ta có: = a × 100 + b × 10 + c.
- Với các số cụ thể thì không viết dấu gạch ngang ở trên.
c) Hệ La Mã
Cách ghi số La Mã như sau:
Chữ số |
I |
V |
X |
Giá trị tương ứng trong hệ thập phân |
1 |
5 |
10 |
Ghép các chữ số I, V, X với nhau ta có thể được số mới. Dưới đây là bảng chuyển đổi La Mã sang số trong hệ thập phân tương ứng (từ 1 đến 10):
Số La Mã |
I |
II |
III |
IV |
V |
VI |
VII |
VIII |
IX |
X |
Giá trị tương ứng trong hệ thập phân |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Các số La Mã biểu diễn các số từ 11 đến 20: Thêm X vào bên trái mỗi số từ I đến X
XI |
XII |
XIII |
XIV |
XV |
XVI |
XVII |
XVIII |
XIX |
XX |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
Các số La Mã biểu diễn các số từ 21 đến 30: Thêm XX vào bên trái mỗi số từ I đến X
Chú ý:
- Mỗi số La Mã biểu diễn một số tự nhiên bằng tổng giá trị của các thành phần tạo nên số đó.
- Không có số La Mã nào biểu diễn số 0.
8. Phép cộng và phép nhân
Phép cộng (+) và phép nhân (×) các số tự nhiên đã được biết đến ở tiểu học.
Chú ý: Trong một tích mà các thừa số đều bằng chữ hoặc chỉ có một thừa số bằng số ta có thể không viết dấu nhân ở giữa các thừa số; dấu “×” trong tích các số cũng có thể thay bằng dấu “.”.
Ví dụ:
- m × n có thể viết là m . n hay mn
- 5 × x × y có thể viết là 5 . x . y hay 5xy
- 125 × 731 có thể viết là 125 . 731
9. Tính chất của phép cộng và phép nhân số tự nhiên
Với a, b, c là các số tự nhiên, ta có:
− Tính chất giao hoán: a + b = b + a; a . b = b . a
− Tính chất kết hợp: (a + b) + c = a + (b + c); (a . b) . c = a . (b . c)
− Tính chất phân phối của phép nhân đối với phép cộng: a . (b + c) = a . b + a . c
− Tính chất cộng với số 0, nhân với số 1: a + 0 = a; a . 1 = a.
10. Phép trừ và phép chia hết
- Ở Tiểu học ta đã biết cách tìm x trong phép toán b + x = a; trong đó a, b, x là các số tự nhiên, a ≥ b.
- Nếu có số tự nhiên x thỏa mãn b + x = a, ta có phép trừ a – b = x và gọi x là hiệu quả của phép trừ số a cho số b, a là số bị trừ, b là số trừ.
- Tương tự với a, b là các số tự nhiên, b ≠ 0, nếu có số tự nhiên x thỏa mãn bx = a, ta có phép chia a : b = x và gọi a là số bị chia, b là số chia, x là thương của phép chia số a cho số b.
Chú ý: Phép nhân cũng có tính chất phân phối đối với phép trừ: a . (b − c) = a . b – a . c (b > c)
11. Lũy thừa
Lũy thừa bậc n của a là tích của n thừa số bằng nhau, mỗi thừa số bằng a.
an = a . a ….. a (n thừa số a) (n ∉N* )
- Ta đọc an là “a mũ n” hoặc “lũy thừa bậc n của a”.
- Số a được gọi là cơ số, n được gọi là số mũ.
- Phép nhân nhiều thừa số giống nhau như trên được gọi là phép nâng lên lũy thừa.
- Đặc biệt, a2 còn được đọc là “a bình phương” hay “bình phương của a”.
- a3 được đọc là “a lập phương” hay “lập phương của a”.
Quy ước: a1 = a.
12. Nhân hai lũy thừa cùng cơ số
Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng các số mũ.
am . an = am + n.
13. Chia hai lũy thừa cùng cơ số
Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ số và trừ các số mũ.
am : an = am – n (a ≠ 0; m ≥ n ≥ 0).
Quy ước: a0 = 1 (a ≠ 0).
14. Chia hết và chia có dư
Cho hai số tự nhiên a và b, trong đó b khác 0. Ta luôn tìm được đúng hai số tự nhiên q và r sao cho a = b . q + r, trong đó 0 ≤ r < b. Ta gọi q và r lần lượt là thương và số dư trong phép chia a cho b.
− Nếu r = 0 tức a = b . q, ta nói a chia hết cho b, kí hiệu a ⋮ b và ta có phép chia hết a : b = q . a
− Nếu r ≠ 0, ta nói a không hết cho b, kí hiệu a ⋮̸ b và ta có phép chia có dư.
15. Tính chất chia hết của một tổng
Tính chất 1
- Cho a, b, n là các số tự nhiên, n khác 0.
- Nếu a ⋮ n và b ⋮ n thì (a + b) ⋮ n và (a − b) ⋮ n (a ≥ b)
- Nếu a ⋮ n, b ⋮ n và c ⋮ n thì (a + b + c) ⋮ n.
Tính chất 2
- Cho a, b, n là các số tự nhiên, n khác 0 (a ≥ b).
- Nếu a ⋮̸ n và b ⋮ n thì (a + b) ⋮̸ n và (a − b) ⋮̸ n.
- Nếu a ⋮ n và b ⋮̸ n thì (a + b) ⋮̸ n và (a − b) ⋮̸ n.
- Nếu a ⋮̸ n, b ⋮ n và c ⋮ n thì (a + b + c) ⋮̸ n.
- Nếu trong một tổng chỉ có đúng một số hạng không chia hết cho một số, các số hạng còn lại đều chia hết cho số đó thì tổng không chia hết cho số đó.
16. Dấu hiệu chia hết cho 2
- Các số có chữ số tận cùng là 0; 2; 4; 6; 8 (tức là chữ số chẵn) thì chia hết cho 2 và chỉ những số đó mới chia hết cho 2.
17. Dấu hiệu chia hết cho 5
- Các số có chữ số tận cùng là 0 hoặc 5 thì chia hết cho 5 và chỉ những số đó mới chia hết cho 5.
18. Dấu hiệu chia hết cho 9
- Các số có tổng các chữ số chia hết cho 9 thì số đó chia hết cho 9 và chỉ những số đó chia hết cho 9.
19. Dấu hiệu chia hết cho 3
- Các số có tổng các chữ số chia hết cho 3 thì số đó chia hết cho 3 và chỉ những số đó chia hết cho 3.
20. Ước và bội
- Nếu có số tự nhiên a chia hết cho số tự nhiên b thì ta nói a là bội của b, còn b là ước của a.
- Tập hợp các ước của a được kí hiệu là Ư(a). Tập hợp các bội của a được kí hiệu là B(a).
Chú ý:
- Số 0 là bội của tất cả các số tự nhiên khác 0. Số 0 không là ước của bất kì số tự nhiên nào.
- Số 1 chỉ có một ước là 1. Số 1 là ước của mọi số tự nhiên.
- Mọi số tự nhiên a lớn 1 luôn có ít nhất hai ước là 1 và chính nó.
21. Cách tìm ước
Cách tìm Ư(a):
Ta có thể tìm các ước của a (a > 1), ta có thể lần lượt chia a cho các số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.
22. Cách tìm bội
Cách tìm B(a):
Muốn tìm bội của số tự nhiên a khác 0, ta có thể nhân a lần lượt với 0, 1, 2, 3, ...
Chú ý:
Bội của a có dạng tổng quát là a . k với k ∈N. Ta có thể viết:
hình
23. Số nguyên tố. Hợp số
− Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.
− Hợp số là số tự nhiên lớn hơn 1 có nhiều hơn hai ước.
Lưu ý: Số 0 và số 1 không là số nguyên tố cũng không là hợp số.
24. Ước chung
- Một số được gọi là ước chung của hai hay nhiều số nếu nó là ước của tất cả các số đó.
- Tập hợp các ước chung của hai số a và b kí hiệu là ƯC(a, b).
x ∈ ƯC(a, b) nếu a ⋮ x và b ⋮ x.
- Tương tự, tập hợp các ước chung của a, b, c kí hiệu là ƯC(a, b, c).
x ∈ ƯC(a, b, c) nếu a ⋮ x, b ⋮ x và c ⋮ x.
25. Bội chung
Một số được gọi là bội chung của hai hay nhiều số nếu nó là bội của tất cả các số đó.
- Kí hiệu tập hợp các bội chung của a và b là BC(a, b).
- Tương tự, tập hợp các bội chung của a, b, c là BC(a, b, c).
Tham khảo KHÓA HỌC TOÁN LỚP 6: Tại đây